ACI Data Sheet Stretchable Screen-Printed Inks & Pastes SS1109, SC1502, and SI3103 Combination SC1502 Lot: GN21002 Exp:6 Months Net: 45g SS1109 SI3104 MATERIALS

SS1109

ACI SS1109 is a silver-filled conductor for printed interconnects for devices on elastomeric substrates. After drying, the ink has excellent conductivity and offers excellent elongation and flexibility. SS1109 has been formulated for superior adhesion to thermoplastic urethanes (TPU). It is compatible with ACI's other stretchable materials. SS1109 is used in stretchable electronics and e-textile applications to power components/devices, and carry signals from embedded devices and sensors. Contact our engineering team for application-specific questions.

Product Benefits

- Superior stretch performance on TPU offering elongation greater than 200%
- Excellent resistivity and rapid return after strain
- Excellent adhesion to TPU
- Washable with ACI stretchable insulator
- Compatible with other products in ACI's stretchable electronics platform

Typical Performance		
Volume Resistivity 135°C for 15 min in box oven	<0.017 Ω/square/mil <4.5.0 x 10 ⁻⁵ Ω.cm	
Maximum Elongation ¹	>200%	
Adhesion ²	5B	

¹2 mm wide trace cured on TPU substrate

² ASTM D3359 Method B

Typical Properties as Supplied	
Physical State	Paste
Color	Silver
Viscosity ³	40 Pa·s
Density	2.39 g/mL
Percent Solids⁴	69%
Shelf Life at 20°C	6 Months

Typical Processing Parameters		
Screen printing, syringe dispense/direct write		
5 min box oven ≥ 135°C 5 min in industrial conveyor oven at ≥ 120°C		
200/230 stainless steel		
10-20 μm		
9/11 m ² /kg		
Slow thorough mix, avoid inducing bubbles, fixed spatula in rotating jar ideal ⁶		
SE8106		
Acetone, MEK, and similar solvents		

³ Anton Paar MCR302 10⁻¹ at 25°C

⁴ 150°C for 120 minutes in box oven

⁵ Double print wet on wet or dry can be used to build thickness

⁶ AT-LM4 Stirring Type Mixer (E211) recommended

SC1502

Stretchable Printed Carbon Conductor

Product Description

ACI SC1502 is a carbon-filled conductor for printed circuitry and devices on elastomeric substrates. It can be dried at low temperatures to accommodate sensitive substrates and devices. After curing, the ink has good conductivity and offers excellent elongation and flexibility. SC1502 has been formulated for superior adhesion to thermoplastic urethanes (TPU). It is compatible with ACI's other stretchable materials and can be printed over the silver grades in sensor applications to limit silver migration.

Product Benefits

- Superior stretch performance on TPU offering elongation greater than 200%
- Excellent resistivity and rapid return after strain
- Excellent adhesion to TPU
- Low cure temperature (80°C) is possible for temperature sensitive materials
- Compatible with other products in ACI's stretchable electronics platform

Typical Performance	
Volume Resistivity 120°C for 15 min in box oven	<200 Ω/square/mil < 0.5 Ω·cm
Maximum Elongation ¹	>200%
Adhesion ²	5B

¹2 mm wide trace cured on TPU substrate

² ASTM D3359 Method B

	Typical Properties as Supplied	
	Physical State	Paste
	Color	Black
	Viscosity ³	37 Pa∙s
	Density	1.08 g/mL
	Percent Solids⁴	20%
	Shelf Life at 20°C	6 Months

Typical Processing Parameters	
Deposition Methods	Screen printing, syringe dispense/direct write
Curing Time and Temperatures	15 min box oven ≥ 120°C < 5 min in industrial conveyor oven at ≥ 120°C
Recommended Screen Meshes	200/230 stainless steel
Recommended Cured Thickness ⁵	6-12 µm
Coverage	43/33 m²/kg
Mixing	Slow thorough mix, avoid inducing bubbles, fixed spatula in rotating jar ideal ⁶
Thinner/Diluent	SE8106
Clean Up Solvents	Acetone, MEK, and similar solvents

³ Anton Paar MCR302 10s⁻¹ at 25°C

⁴ 150°C for 120 minutes in box oven

⁵ Double print wet on wet or dry can be used to increase deposition thickness

⁶ AT-LM4 Stirring Type Mixer (E211) recommended

SI3104

Stretchable Printed Insulator

Product Description

ACI SI3104 is a screen printable, thermally cured ink that is stretchable when cured and compatible with ACI's stretchable inks. SI3104 can be used as an insulator and/ or crossover dielectric. When cured, the ink displays exceptional durability, excellent flexibility, and high insulation resistance. SI3104 has excellent adhesion to TPU, and is fully compatible with ACI's suite of products engineered for stretchable and flexible electronics.

Product Benefits

- Excellent adhesion to elastomeric substrates
- Maintains flexibility and stretchability to more than 100% elongation
- Good dielectric breakdown strength
- Fully compatible with ACI's stretchable inks and conductive adhesives

Typical Performance	
DC Breakdown¹	250 V/mil
Adhesion ²	5B
Maximum Elongation	100%

¹ Three layers printed with 180.0018 Stainless Steel mesh (ACI DC Voltage Breakdown Test)

 $^{^2\,\}mathrm{Method}$ based on ASTM D3359 Method B tested on 0.005" Melinex® ST506 PET

	Typical Properties as Supplied	
	Physica l State	Paste/Ink
	Color	Translucent White
	Viscosity ³	33 Pa∙s
	Density	1.15 g/mL
	Percent Solids ⁴	32%
	She l f Life at 20°C	12 Months

	Typical Processing Para	meters			
	Deposition methods	Screen printing			
	Ideal Curing Time and	5-15 min in box oven at 135°C			
	Temperatures	5 min in industrial conveyor oven at 135°C			
	Recommended Screen	150/0.0026" – 200/0.0016"			
	Mesh Range TPI/Wire	Stainless Steel			
	Diameter	110/43µm – 140/55µm PET			
	Emulsion Over Mesh (EOM) Thickness	15 μm			
	Squeegee Durometer	70A – 80A			
	Recommended	150/0.0026"	14 µm DFT	12 m2/kg	
	Meshes - Theoretical	200/0.0016"	9 µm DFT	15 m2/kg	
	Dry Film Thickness -	110/43µm	14 µm	12 m2/kg	
	Coverage	140/55µm	10 μm	15 m2/kg	
	Recommended	3			
	# Layers	5			
	Mixing	Slow thorough mix, avoi fixed spatula in rotating			
	Thinner/Diluent	SE8106			
	Storage	In sealed container in cool dry location			
	Clean Up Solvents	Acetone, MEK, and similar solvents			
1	2				

 $^{^3}$ Measured on Anton Paar MCR302 at 10^{-1} sec shear rate at 25° C after pre-shearing at 100^{-1} sec for 5 min

 $^{^4}$ 150 °C for 120 minutes in box oven

⁵ AT-LM4 Stirring Type Mixer (E211) recommended

Contact ACI

Email: info@acimaterials.com Phone: 805-324-4486

Website: www.acimaterials.com

Mailing and Shipment Address

ACI Materials, Inc. 44 Castilian Drive Goleta, CA 93117

Caution

Proper industrial safety precautions should be exercised in using these products. Use with adequate ventilation. Avoid prolonged contact with skin or inhalation of any vapors emitted during use or heating of these compositions. The use of safety eye goggles, gloves or hand protection creams is recommended. Wash hands or skin thoroughly with soap and water after using these products. Do not eat or smoke in areas where these materials are used. Refer to appropriate MSDS sheet.

Disclaimer

The product information and recommendations contained herein are based on data obtained by tests we believe to be accurate, but the accuracy and completeness thereof is not guaranteed. No warranty is expressed or implied regarding the accuracy of these data, the results obtained from the use hereof, or that any such use will not infringe any patent. Applied Cavitation, Inc. assumes no liability for any injury, loss, or damage, direct or consequential arising out of its use by others. This information is furnished upon the condition that the person receiving it shall make their own tests to determine the suitability thereof for their particular use, before using it. User assumes all risk and liability whatsoever in connection with their intended use. Applied Cavitation's only obligation shall be to replace such quantity of the product proved defective.

